NORTH DAKOTA FRACKING MARKET PRELIMINARY REVIEW FOR SALES & MARKETING TEAM

http://www.sei-ind.com/products/frac-tank

INDUSTRY		NORTHERN USA			
TARGET		BAKKEN – FRACKING FIELD OPERATORS			
BEACHHEAD		MCLEAN COUNTY, ND			
CITY		WASHBURN, ND			
PERIOD		ACTIVITIES			
1-2 Weeks	PRE-PHASE	Determine/Negotiate Sales Targets & Metrics.			
30 to 90 Days	PHASE 1	 Identify Bakken Formation Counties that have lower production. 			
		 Identify Counties that do not or are not expected to have Pipeline capacity. 			
		Select Top 3 Counties and Top 1 of 3.			
		4) Here, McLean County is shown as Target.			
		5) Build Sales in Target Region.			
		Research Target County for Beachhead activity.			
		Scout/initiate relationships to start building network			
		to reach across the region. Starting with State			
		Capital (Bismark, ND), State Officials & McLean			
		County officials, Operators in County. Meet and/or			
		network with Dealers or Potentials (Farm Equipment			
		Suppliers, O&G vendors, etc).			
	PHASE 2	Determine Tax & Cost Issues for Market Operators.			
		Identify Hot Buttons through interviews/site visits.			
	PHASE 3	Design/test packages. Identify/pitch Early Adopters.			

A) KEY NOTES Target Selection working file p.3. Background Notes p.4-18.

- 1) Flaring now consumes 29-33% of Associated Gas.
- 2) Many wells are not yet connected with gas-gathering systems.
- 3) **Connect-up is challenged in a largely rural area.** Without Pipelines in play, Industry has to share rig drilling and fracking resources that are moved around on poor-to-non-existent rural road network in area with large farm acreages.
- 4) State Government is pushing hard for Fresh/Saltwater Fracking Pipelines.
- 5) This push could threaten SEI's ability to grow Hippo sales.
- 6) Issues for State Government:
 - a. **Political:** Flaring and Venting contaminates soil, water, atmosphere, which affects the influential farming and visitor/tourism industry
 - b. **Economic:** gas-gathering systems = local construction jobs
 - c. Efficiency: Pipelines can be dual-purpose reversed to take oil and/or gas
 - d. Loss of Resource: Flaring and Venting
 - e. Lost Taxes (a) from Flaring
 - f. Lost Taxes (b) from concurrent 1-Year Tax Exemption (encourages exploration)

(Cont'd)

MARKET DEVELOPMENT – BEACHHEAD TARGET ASSESSMENT WORKSHEET

	t 5)														
FCR		FRACKING	CANDIDATE	RATING (Pr	oposed Likel	ihood of Need fo	r Fracking Service	s)							
COLOUR SAMPI	SAMPLE		Production		Econ Rec	Reserves	Year 1	Year2	Year3	Mid-Decline		FCR Pipeline	FCR Econ/Tank	FCR Econ/Product	Challenge for
												Known	Known	New	Innovative
												Reliable	Reliable	Untested	Prospect
												\$Cost: Very High	\$Cost: Mid	\$Cost: Mid to Low	(Innov ROI)
IGHTEST	Oliver	5	Lowest		Lowest	Lowest	Lowest	Good	Sharp Neg	Leveling Off				Lowest Competition	Worst IROI
	Morton	4					Low	Good	Sharp Neg	Leveling Off				Lower	** TARGET
St	Stark	3					Mid	Good	Sharp Neg	Leveling Off		Removes need for		Mid	
	Dunn	2					High	Good	Sharp Neg	Leveling Off		Portable Frak		Greater	
	Williams	1					Highest	Good	Sharp Neg	Leveling Off		Tanks	More Competition	Greatest	Best IROI
OARKEST	McKenzie	0	Max		Max	Max	Max	Good	Sharp Neg	Leveling Off			More Competition	Greatest	Best IROI
			•			•	•		IORTH TO SOUTH	LISTING	·	•			
					FORMAT	ON WEST			FORMATION E	AST					
		County	Gas Plant	Planned	Vol Range	Apparent FCR	Est Actual FCR	BBL	County	Gas Plant	Planned	Vol Range	Apparent FCR	Est Actual FCR	E
Ш И		Divide	1		High	2		17.70	Renville	0	0	Low	4	** TARGET **	0
7		Burke	2		High	2		17.00	Bottineau	0	0	Mid	3		1
NORTH-LINE		Williams	3	1	High	1		28.90	McHenry	0	0	Low	4	** TARGET **	0.
2 2		Mountrail	2	2	High	1		28.90	Ward	0	0	Mid	3		5.
		McKenzie	5		High	0		36.40							
¥		Dunn	2	_ 1	High	2		20.10	McLean	0	0	Mid	4	** TARGET **	3.
Ę		Billings	1.5	0.5	Mid	4	** TARGET **	4.90							
MID-LINE		Stark		L 0.5	Mid	4	** TARGET **	3.90	Mercer	0	0	Low	5		0
-									Oliver	0	0	Low	5		0
		GoldenV		L _{0.5}	Low			0.09	Morton	0	0	Low	5		0
NE															
로		Slong	1		low	5		0.00	Grant	0	0	Low	5		0.
SOUTH-LINE		Slope Other Cty	1		Low	5		0.00	Grant	0	U	LOW	5		0.
S										Gas P	lants	Oil Pipeline	Gas Pipeline	Apparent	TEST TARG
			Divide							Existing	Planned	Y=1, N=0	Y=1, N=0	FCR	1 = Top Cho
			Divide 17.7 bill.	Ron	ville				Renville	0	0	1 (1 Main)	1 (1 Main + Feed)	4	3
				17.0 km 0.2 l					McHenry	0	0	1 (1 Main)	1 (2 Main)	4	
			-	17.0 bill.	Bottineau				ivichenry	0	0				
			Williams 28.9 bill.	17.0 000.	Bottineau 1.6 bill.	3 -		1	Meloon	0					2
			Williams 28.9 bill.	17.0 bill.	- 1.6 bill, lard McHenry 0.5 bill		TARGET_B		McLean Billings	0	0	0 1 (2 Main + 1 Feed)	1 (1 Main + Feed) 1 (1 Main + Feed)	4 4 4	2 1 5

T: +1.778.828.4933 | E: Huer.David@gmail.com

BACKGROUND / REFERENCE NOTES COMMENCE HERE:

В	STATE GOVERNMENT'S TARGET – BUILD WATER FRACKING PIPELINES
С	SWOT – BAKKEN FRACKING OVERVIEW
D	GEOLOGICAL FRAMEWORK
E	KEY RESERVOIR PROPERTIES
F	POROSITY AND PERMEABILITY
G	NOTE ON BAKKEN RECOVERABILITY
Н	CHARTS AND IMAGERY

B) STATE GOVERNMENT'S TARGET – BUILD WATER FRACKING PIPELINES : Cut time to share/move frack trucks, reduces interference & road damage.

Bakken Wells 2-4 - Truckload Timeline				
https://www.dmr.nd.gov/oilgas/presentation	s/HouseAppi	rop011020	13.pdf	
FRACKING TIME SAVINGS WITHOUT NEED FOR	TANKS			
PRODUCTION WITHOUT PIPELINE CONNECTIO	N			
				Max Days
	Max			(Total or
	Loads	Min	Max	Average)
Location & Production Prep completed with fin	rst well. No a	additional	trucks.	
Drilling Preparation	25			3
Drilling Phase	167			19
Rig Down	6			2
Wait for Frack	0	90	120	120
Fracturing Phase	584			15
454 Tank Loads + 130 Trucks per Well				
Production Equipment Move	14			150
Pit Reclamation (36 to 41)				
	6			76
Pit (6)		7	14	10
Pit (6) Emptying Water & Drilling Fluid (30 to 35)	35	7	14	10
	35 0	/	14	
Emptying Water & Drilling Fluid (30 to 35)		/	14	0
Emptying Water & Drilling Fluid (30 to 35)	0	/		0
Emptying Water & Drilling Fluid (30 to 35) Production Phase	0			0
Emptying Water & Drilling Fluid (30 to 35)	0	7	14	0 395
Emptying Water & Drilling Fluid (30 to 35) Production Phase	0			0 395 Max Days
Emptying Water & Drilling Fluid (30 to 35) Production Phase	0 837	Min	Max	0 395 Max Days (Total or
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION	Max Loads	Min	Мах	C 395 Max Days
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION	Max Loads	Min	Мах	0 395 Max Days (Total or Average)
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation	Max Loads rst well. No a 25	Min	Мах	C 395 Max Days (Total or Average)
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase	Max Loads rst well. No a 25 167	Min	Мах	O 395 Max Days (Total or Average) 3 19
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down	0 837 Max Loads rst well. No a 25 167 6	Min	Мах	C 395 Max Days (Total or Average) 3 19 2
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack	Max Loads rst well. No a 25 167 6	Min	Мах	C 395 Max Days (Total or Average) 3 19 2 2 0
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase	0 837 Max Loads rst well. No a 25 167 6	Min	Мах	C 395 Max Days (Total or Average) 3 19 2 2 0
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well	Max Loads rst well. No a 25 167 6	Min	Мах	C 395 Max Days (Total or Average) 3 19 2 2 0
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well Incl an estimated 250 less Frack Loads	0 837 37 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Min	Мах	C 395 Max Days (Total or Average) 3 19 2 0 15
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well Incl an estimated 250 less Frack Loads Production Equipment Move	Max Loads rst well. No a 25 167 6	Min	Мах	C 395 Max Days (Total or Average) 3 19 2 0 15
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well Incl an estimated 250 less Frack Loads Production Equipment Move Pit Reclamation (36 to 41)	0 837 37 37 37 37 37 37 37 37 37 37 37 37 3	Min	Мах	0 395 Max Days (Total or Average) 3 19 2 0 15 150
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well Incl an estimated 250 less Frack Loads Production Equipment Move Pit Reclamation (36 to 41) Pit (6)	0 837 837 Max Loads rst well. No a 167 0 32 14 14 6 6 6 6 6 6 6	Min	Max trucks.	0 395 Max Days (Total or Average) 3 19 2 0 15 150 150 150
Emptying Water & Drilling Fluid (30 to 35) Production Phase PRODUCTION WITH PIPELINE CONNECTION Location & Production Prep completed with fin Drilling Preparation Drilling Phase Rig Down Wait for Frack Fracturing Phase With Reduced Loads + Trucks per Well Incl an estimated 250 less Frack Loads Production Equipment Move Pit Reclamation (36 to 41)	0 837 37 37 37 37 37 37 37 37 37 37 37 37 3	Min	Мах	0 395 Max Days (Total or

C) SWOT – BAKKEN FRACKING OVERVIEW

VARIABLE	MARKET	SEI CONDITION OR RESPONSE
STRENGTHS	Some of the most productive wells are located in the west of the state. McLean is a mid-volume county which has a gap in the middle that does not have pipelines. 65% of activity is conducted by 7 major companies (in order, from	Well known in O&G industry. Test the market in counties that appear to have less likelihood of getting pipelines (confirming initial assessment with residency over 90 days). Larger companies can carry the cost of different systems across
	largest to smallest):	many fields. We may find a niche here.
	Continental Resources Hess Whiting Petroleum Statoil/Brigham Oasis Petroleum Marathon EOG Resources	
WEAKNESSES	This is a Tight Reservoir. Unpredictability of geology = unpredictability of production = higher costs = higher risks. The 7 majors may force a cartel on SEI. This may, however, produce volume sales overall.	Hippo may have perceived time cost to: unpack, unroll, use, undog, flush to regulation, roll- up, box, stack. Flatbed trucks quickly travel; traditional metal containers may be perceptibly stronger. Traditional Tanks may be amortized assets or leased expenses with known costs.
	We are not a "neighbor" – we are not known vs Saskatchewan firm.	We are not a "neighbor" – not directly contributing to local jobs. Get dealership for region?
OPPORTUNITIES	Pitch Air Delivery as an efficiency & environmental measure that supports State's contention that road network is a problem.	Hippos could be stacked flat, then helicoptered to new sites, saving truckload time negotiating poor road network to sites. Flight vs environmental costs could be factored in by State. Partner with BC's CHC to build
	Assess State's "Total Cost of No Road Network" [roads must be in place to build hydrocarbon- gathering systems] We could propose a volume	shared Dakotas' presence Develop Rationale for Tax Credit to accomplish road network in high production counties (away from our initial target areas). Large operators credits will cover off now higher value/lower cost Hippo option. SEI could develop a leasing

Page 5 of 18

	system, where members cut costs through a leasing co-op. This spreads the risk for members.	subsidiary in partnership with a ND bank or farmer's co-op.					
THREATS	Push for Pipelines by State & County officials. Connect-up threatens market base.	Can Hippo be used as a Head Pool for water storage from the pipeline?					
	Steel Frack Tank companies could seek to operate pipeline system, further blocking us.						
TYPICAL FLATBED TRAILER DI	MENSIONS:						
Deck: 48' long x 102" wide Height: 60" x 62" high Maximum Freight Height 8'4"							
http://www.jcnester.com/Flatbed %20Trailer%20Dimensions.htm							
TYPICAL STEEL FRAC TANKER	DIMENSIONS:						
Generally, off standard container truck.							
http://www.dragonproductsltd.co m/tanks/fr-corrugated-wall.html							

T: +1.778.828.4933 | E: Huer.David@gmail.com

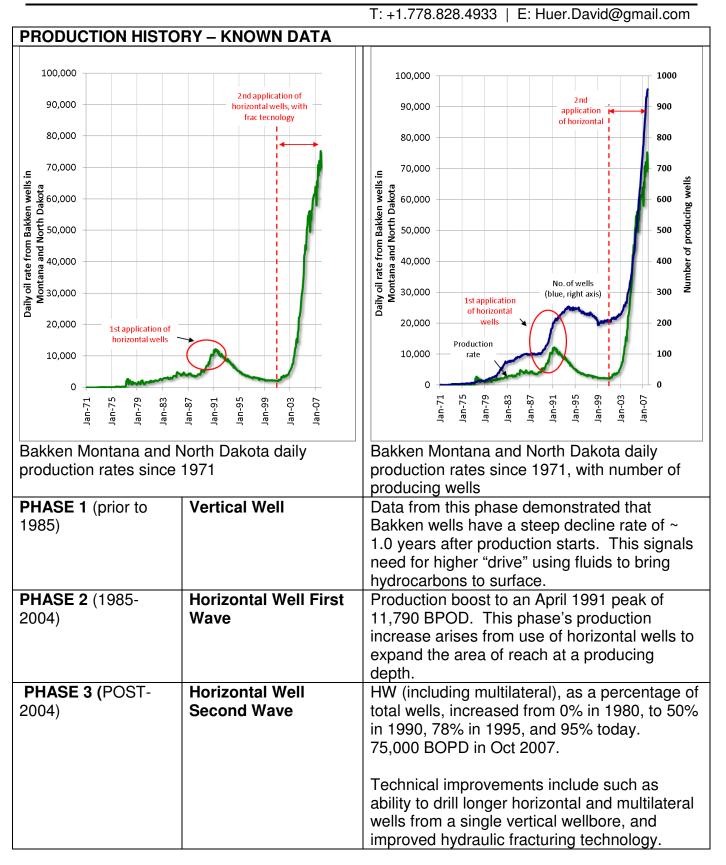
D) GEOLOGICAL FRAMEWORK

http://geology.com/usgs/bakken-formation-oil.shtml

O&G PROVINCE	WILLISTON BASIN	A sedimentary basin c		
		states and two provinc	es. The total layer of	
		sediments in the basin can be up to 15,000 f thick. The Bakken is one of many hydrocarbo		
		producing formations in the Basin		
TOTAL PETROLEUM	BAKKEN-	Maximum thickness of	about 150 ft., but is	
SYSTEM	LODGEPOLE TPS	thinner in most areas.	The depth to the top of	
		Bakken can vary from	a few thousand feet in	
		Canada to 10,000+ fee	et deeper areas in ND.	
	BAKKEN SHALE	Upper Devonian-	about 360 million	
	FORMATION	Lower Mississippian	years ago	
		Each succeeding mem		
		geographic extent than	0	
		Note: upper and lower	, ,	
		Bakken Formation are		
		reservoirs of the Missis	ssippian Lodgepole	
		Formation.		
	Upper Shale Member	Petroleum source rocks and part of the continuous reservoir: Organic-rich marine		
		shale of fairly consistent lithology.		
	Middle Sandstone	varies in thickness, lith	ology, and petrophysical	
	Member	properties, and local de	evelopment of matrix	
		porosity enhances oil p	production in both	
		continuous and conver	ntional Bakken	
		reservoirs.		
	Lower Shale Member	Petroleum source rock	s and part of the	
		continuous reservoir: C	Drganic-rich marine	
		shale of fairly consiste		
PRODUCTION	Estimated Mean	Oil	3.65 billion barrels	
ESTIMATES	Undiscovered			
	Volumes:	Associated/Dissolved	1.85 trillion cubic feet	
	USGS: geology-	Natural Gas		
	based assessment	Natural Gas Liquids	148 million barrels	
	methodology for North			
	Dakota and Montana			

E) KEY RESERVOIR PROPERTIES:

http://www.theoildrum.com/node/3905


Oil in Place and F	Reserves	
100%	200-400 billion bbl	Oil in Place : 200 to 400 billion barrels [Pittman/Price/ LeFever]. The Bakken is postulated to be both source rock and reservoir. In many areas, the oil created by the source rock slowly migrates to another location where it is trapped and later found as an oil or gas reservoir. In the case of the Bakken, these layers contain source material, but the hydrocarbon was cooked in place and little or none of the created hydrocarbon migrated to other potential reservoir rocks.
30%	"Good"	Reserves (Recoverable or Produceable): Range of recovery can very widely. Good reservoirs with "water drive" can have recoveries of more than 30% of oil in place.
~5% up to 15%.	"Sweet Spots"	higher porosity and lots of fracture permeability
1% to 10%	"Tight"	As reservoir quality decreases, so does recovery factor. In very tight reservoirs, recovery would probably be in the range of less than 1% to around 10%, depending on many factors: porosity, permeability, fractures, well spacing, etc.
< 1% to 5% OIP	"Other areas"	have lower porosity, lower permeability, and fewer fractures, and/or thinner beds of reservoir rock
RECOVERABILIT	Υ	

"Technically Recoverable" and "Economically Recoverable," a term which can be taken as the amount of producible reserves that will give a reasonable return on capital invested. Factors include spot price, cost of wells, cost of fuel and operations, labour availability, etc. and this will fluctuate as market conditions change, and areas with low reservoir estimates will never be drilled because of the risk of a tight/dry well (ie. \$0 Return on Investment).

"Estimating recovery factor in shale reservoirs is more an art than a science; only after several years of production, and with very good data, can a reliable range of recovery be estimated."

Example:

1% OIP	Technically Recoverable	OIP estimates suggests 1% availability				
0% OIP	Economically Recoverable	If operator decides against risking capital				
** KEY POINT**	SEE: "Note On Bakken Recoverability." The Bakken is a "Tight Reservoir".					

F) POROSITY AND PERMEABILITY

Page 9 of 18

http://geology.com/usgs/bakken-formation-oil.shtml

Two key properties of reservoir rock are porosity and permeability. Porosity is a measure of how much "empty" volume the rock has space available to store hydrocarbons, water, or gas. Really good formations can have porosities of 20% to 30% or more. Permeability is a measure of how easily fluid can flow through the rock. The best reservoirs have permeabilities of 1 to 5 darcies or more. (1 Darcy = 1000 millidarcies: better reservoirs are usually measured in darcies, and poorer reservoirs in millidarcies.) high porosities and permeabilities can be found in many world class prolific oil and gas fields, such as offshore Gulf of Mexico, North Sea, and Saudi Arabia.

The majority of currently producing reservoirs in the onshore US **are by contrast much "tighter."** A pretty good reservoir might have porosities of 10% to 15% and permeabilities of 1 to 100 millidarcies (0.001 to 0.1 darcy). Reservoirs with those properties by and large would be considered very desirable reservoir in most of the onshore US and Canada.

Moving downward on the scale of reservoir quality, many thousands of wells in the US are now being drilled in so-called "<u>resource plays</u>." These are thick, laterally extensive reservoirs usually covering thousands of square miles, and filled with hydrocarbons, but they are difficult to exploit. The Bakken Shale, along with formations like the Barnett, Fayetteville, and Woodford shales fall into this category. Permeabilities can be in the range of .00001 to .01 millidarcies, with porosities in the range of near zero to maybe 10% or a bit higher.

Porosity and permeability can vary widely and unpredictably over short distances. There are many stories on oil field lore about dry holes drilled next to prolific producing wells, with little explanation geologically about why this might occur. This phenomenon is one of the primary risks that oil producers take when they drill wells, especially in new areas or highly variable reservoirs.

Studies reports a wide range of measured permeabilities and porosities in the Bakken, but the average is low. One part of the report gives the average porosity and permeability for the middle Bakken as being 5% and 0.04 millidarcies. In many of these very tight reservoirs, natural fractures play a big role. These are natural cracks which have low porosity but can have permeabilities one to several orders of magnitude greater than the rock fabric or matrix. Most of the better wells in the Bakken have encountered abundant natural fractures.

Even with an extensive natural fracture system, often times additional help is needed to create an economic well. This is where hydraulic fracturing comes in. Fluid, sometimes with sand or other material ("proppant") is pumped at high pressure into the formation. The pressure is high enough to create large artificial fractures that can extend hundreds of feet from a wellbore. Proppant holds the fracture open, and creates a permeable channel to allow hydrocarbons to flow to the wellbore. Production in many, or perhaps most, of the producing formations in the US is improved by hydraulic fracturing. When hydraulic fracturing is combined with horizontal wells (and high enough commodity prices), many of the shale or resource plays become economic to produce.

G) NOTE ON BAKKEN RECOVERABILITY

http://www.theoildrum.com/node/3905

"Production of wells in a field is usually log-normally distributed. A few wells produce at high rates, and most of the wells produce at less than average rates. In a typical field the best 20% of wells pay for the other 80%. It's a numbers game - unless one is lucky enough to hit a big well on the first try, one needs to stay in the game long enough to drill enough wells to achieve an acceptable statistical average.

The field decline during the period of February 1993 to February 1997 is about 25% per year. If many new wells were not being drilled and put into production during this decline period, the overall decline would be considerably steeper. Note that after January 1997, the decline flattens somewhat; this would be the beginning of the long "tail" period of production from existing wells, characterized by low producing rates with shallower decline."

The number of new wells being drilled will not necessarily improve the production of the field, because of the geological nature of tight, fractured reservoirs (ex. a dry well adjacent to a producing well). Individual wells may reach Peak Production Rate and then decline. In the Bakken, the record suggests a short-lived peak and then rapid decline that can be anywhere from 20% to 60% per year for up to two years, then a low and slowly declining rate over many succeeding years. Operators facing this high rate / rapid decline characteristic may achieve an initial high field production rate for a short time. Additional wells may not offset overall field decline. Also, geological oddities may make it unprofitable to drill new wells if production decline from the initial wet holes is sufficiently high to make total field production ROI unprofitable.

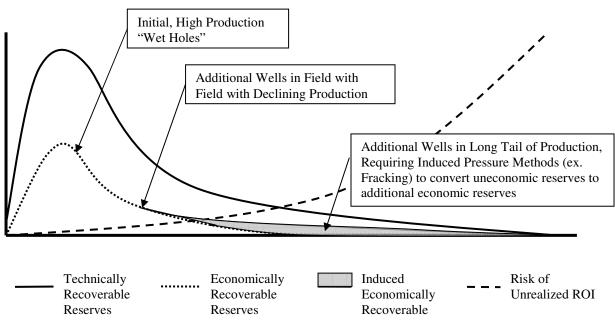
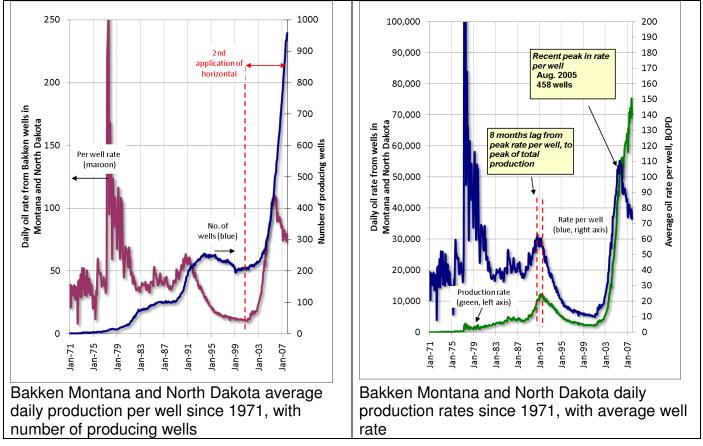


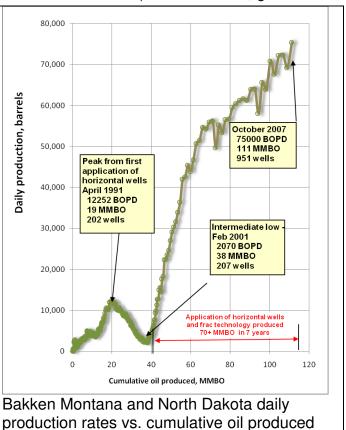
Diagram Only (For Example Purposes Only): Economic Activity in a Field


(Quote): If we consider average production per well, we find that its behavior may be predictive

Page 11 of 18

of later field decline. The average production per well is simply total reported Bakken production for the period, divided by the total number of wells producing during the period. If a well is drilled and goes on production in a certain period, the well count goes up by one, and the well's production gets added to the total. If a well becomes uneconomic during the period, and the operator stops producing the well, the well count goes down by one. In any given month, wells that come on at high rates of say, 1,000 BOPD, are averaged with wells already on production that may be producing 100 or 50 BOPD. If there is a population of wells already producing and on decline, bringing on more wells at temporarily high rates (the 1,000 BOPD may last for one month or two months max in most cases) will only raise the average production slightly.

For the first wave of horizontal technology, the per-well production peaked in August 1990 at 71 BOPD per well, with 142 wells producing. The per-well production then declined, even though additional wells were brought on production for the next 4 years. In August 1994, the peak well count of 235 wells was reached, but by then the average per well rate was only 22 BOPD. Interestingly and perhaps alarmingly, the 2nd wave of Bakken horizontal well production reached in August 2005 a peak per-well rate 116 BOPD per well, with 433 wells on production. Based on production in the early 90's this may portend a near term decline in Bakken total production. As of October 2007, however, the total Bakken production rate was still rising rapidly.


Even if Bakken production should peak, this doesn't necessarily mean a permanent decline in production. Past history shows that some combination of new technology, new discoveries, and higher prices could lead to another uptick in production.

Looking at the total Bakken **Production vs. The Cumulative Production (right)** will allow us to approximate produced volumes of the two waves of horizontal technology. The first wave production curve indicates that if no new wells were drilled, the ultimate recovery would have been about 41 million barrels. The second wave of horizontal technology did indeed dwarf the first wave, and we can say that so far the second wave has added about 70+ million barrels of production.

The first wave of horizontal technology peaked at about 20 million barrels, with an ultimate recovery of about double that, or 41 million barrels. Using this analogy, if the industry were able to keep up the current rate of increase for the next two years, and reach a peak production at 150 million barrels cumulative recovery, ultimate recovery could reasonably be estimated as being around 300 million barrels, without additional new waves of development.

T: +1.778.828.4933 | E: Huer.David@gmail.com

H) CHARTS AND IMAGERY

CHART 1

https://www.dmr.nd.gov/oilgas/ presentations/HouseApprop01 102013.pdf

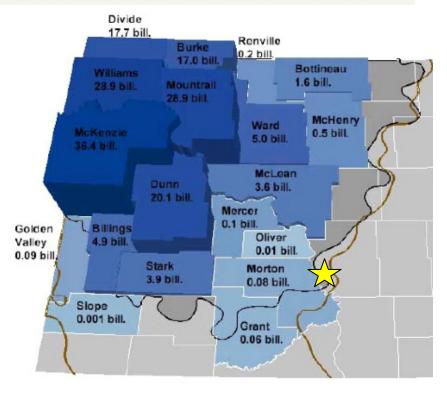


CHART 3

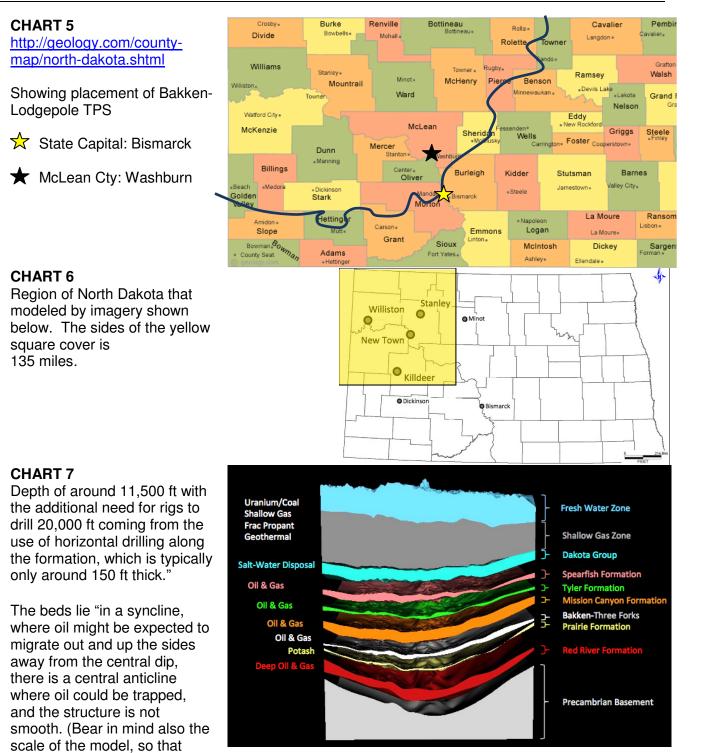
http://geology.com/usgs/bakke n-formation-oil.shtml T: +1.778.828.4933 | E: Huer.David@gmail.com

Figure 1. Map showing Williston Basin Province boundary (in red), Bakken-Lodgepole Total Petroleum System (TPS) (in blue), and major structural features in Montana, North Dakota, and South Dakota.

CHART 4

http://www.theoildrum.com/file s/1%20OOIP%20by%20count y%20ND%20.png

Original Oil in Place (OOIP) OOIP estimates by county (North Dakota DMR)

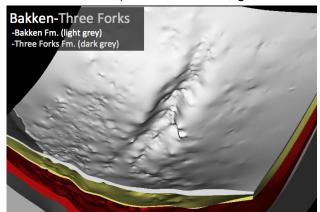

🔆 State Capital: Bismark

Page 15 of 18

small traps in the field are not

picked up at this level.) The

(Cont'd)


7A) Section through the ND geology

structure of the shale beds themselves also make it less sensitive to geological modifications which drive oil migration, though obviously not completely or else there would be little oil flow to the well."

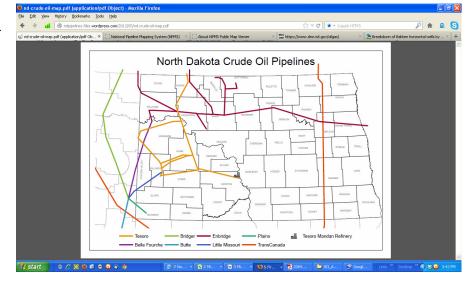
> AREA IN RED IS WESTERN PORTION OF MCLEAN COUNTY

> > (Western Portion of Target County)

T: +1.778.828.4933 | E: Huer.David@gmail.com

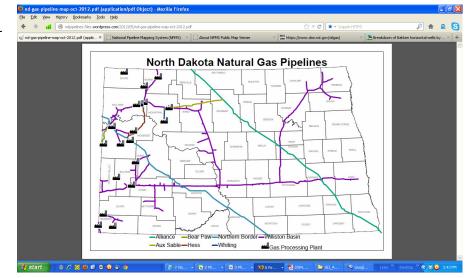
7B) Model of the Bakken formation around Williston

7C) Location of wells in the modeled region of North Dakota. Note the dominant North-South feature through the centre—this is the location of many wells drilling into the reservoir.


Page 17 of 18

DAVID HUER Tel: +1.778.828.4933 Email: Huer.David@gmail.com

(Cont'd)


CHART 8

http://ndpipelines.files.wordpress.com/2012/05/ndcrude-oil-map.pdf

CHART 9

http://ndpipelines.files.wordpress.com/2012/05/ndgas-pipeline-map-oct-2012.pdf

